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An Optimal Ensemble Empirical
Mode Decomposition Method for
Vibration Signal Decomposition
The vibration signal decomposition is a critical step in the assessment of machine health
condition. Though ensemble empirical mode decomposition (EEMD) method outperforms
fast Fourier transform (FFT), wavelet transform, and empirical mode decomposition
(EMD) on nonstationary signal decomposition, there exists a mode mixing problem if the
two critical parameters (i.e., the amplitude of added white noise and the number of
ensemble trials) are not selected appropriately. A novel EEMD method with optimized
two parameters is proposed to solve the mode mixing problem in vibration signal decom-
position in this paper. In the proposed optimal EEMD, the initial values of the two criti-
cal parameters are selected based on an adaptive algorithm. Then, a multimode search
algorithm is explored to optimize the critical two parameters by its good performance in
global and local search. The performances of the proposed method are demonstrated by
means of a simulated signal, two bearing vibration signals, and a vibration signal in a
milling process. The results show that compared with the traditional EEMD method and
other improved EEMD method, the proposed optimal EEMD method automatically
obtains the appropriate parameters of EEMD and achieves higher decomposition accu-
racy and faster computational efficiency. [DOI: 10.1115/1.4035480]

Keywords: vibration signal decomposition, ensemble empirical mode decomposition,
multimode search, mode mixing

1 Introduction

Vibration signals carrying a lot of information about the mechani-
cal equipment health condition are frequently applied to monitor the
machine health condition. The vibration signal decomposition is a
critical step in machine health monitoring and fault diagnosis [1–3].
The methods to decompose vibration sensor signal mainly include
FFT, wavelet transform, and EMD [4]. Among these methods, the
FFT is one of the most widely used and well-established methods.
However, there are some crucial restrictions on the use of Fourier
transform. On the one hand, the FFT is a typical linear and station-
ary transform, which is not suitable for nonstationary signal analy-
sis. On the other hand, it is suitable for global signal analysis instead
of local signal analysis. Unfortunately, the vibration signals to be
analyzed are often nonstationary and nonlinear especially under
time-varying operational conditions. Hence, the FFT cannot fully
fulfill the requirements of health monitoring and fault diagnosis.
Recently, wavelet transform has become one of the most powerful
signal processing tools on nonstationary signal decomposition
[5–11]. Detailed descriptions of the existing research on application
of the wavelet transform in machine condition monitoring and fault
diagnostics are reviewed in Ref. [12].

In 1998, Huang et al. introduced the EMD method for analyzing
data from nonstationary and nonlinear processes, which is based

on instantaneous frequency [13–17]. The major breakthrough of
the EMD is that the basis functions are derived from the signal
itself, hence, the analysis is adaptive. The EMD method is very
suitable for nonlinear and nonstationary signal, which has been
demonstrated to be an effective sensor signal analysis method
[18,19]. However, the primary drawback of the original EMD is
mode mixing caused by intermittency of the driving mechanisms
[20,21]. Mode mixing is defined as a single intrinsic mode func-
tion (IMF) consisting of signals of widely disparate scales, or a
signal of a similar scale residing in different IMF components.
Mode mixing is often a consequence of abnormal events including
the intermittency signal, the pulse interference, and the noise. The
presence of abnormal events causes the abnormal distribution of
the extreme points of the envelope obtained by the cubic spline
interpolation in the EMD sifting process, which leads to the fact
that decomposition result is a mixture of the signal and abnormal
events. An EMD-based enhanced signal decomposition approach
that synthetizes the original information content into a minimal
number of relevant modes via a data-driven and automated
procedure is developed in Ref. [22]. To solve the mode mixing
problem, EEMD, a substantial improvement of EMD, is devel-
oped by Wu and Huang [23]. EEMD is a new noise-assisted data
analysis method, which utilizes full advantage of the statistical
characteristics of white noise to decompose signal. Since the
EEMD method has improved the decomposition accuracy, it has
been quickly adopted in machine health condition monitoring and
fault diagnosis [24–33].

The performance of EEMD severely depends on the selection
of two important parameters: the amplitude of added white noise
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and the number of ensemble trials. Although Wu and Huang [23]
suggested that the amplitude of the added white noise is about
0.2 standard deviation of that of the original signal and a few hun-
dreds of trials for ensemble will lead to a very good result, so far
there are no specific methods to guide the EEMD parameter selec-
tion, which needs to be setup according to experience. By analyz-
ing the effect of white noise on the decomposition in EMD, Chen
et al. [34] established a criterion of the added white noise in
EEMD. If the amplitude of the added noise is too small with
respect to the original signal, a considerable elimination of mode
mixing cannot be achieved. On the contrary, if the amplitude of
the added noise is too large, it will create some redundant IMF
components that lead to misinterpretation of the analysis result.
Although an infinite number of ensemble trials is needed to com-
pletely cancel out the effect of the added white noise, too many
trials would increase the computational cost [35]. By virtue of
the inappropriate amplitude of added white noise for EEMD, non-
ideal results would occur. For example, a signal including an
intermittent signal is decomposed by the traditional EEMD with
the results shown in Fig. 1. IMF1 contains intermittent high-
frequency signal and some of the low-frequency sinusoidal signal,
which should appear in IMF2. It is clear that the problem of mode
mixing appears among different IMFs. The frequency mixing has
an obvious negative effect on the subsequent decomposition.
IMF2 and IMF3 have a similar frequency of the waveform, but
reside in different IMF components. So the intermittence not only
causes serious aliasing in the time-frequency distribution but also
makes the physical meaning of individual IMF unclear.

The main contribution of this paper is that a novel optimal
EEMD method based on an adaptive algorithm and a multimode
search algorithm is proposed to solve the mode mixing problem in
vibration signal decomposition. Subsequently, the performances
of the proposed method are demonstrated by means of a simulated
signal, two bearing vibration signals, and a vibration signal in a
milling process.

The rest of the paper is described as follows: In Sec. 2, brief
introduction to EEMD is given. The optimal EEMD method is
explored, and performance evaluation indices are presented in
Sec. 3. A simulation experiment, two examples with bearing
vibration signals, and a case study are presented in Secs. 4–6,
respectively. The conclusion is given in Sec. 7.

2 Brief Introduction to Ensemble Empirical Mode

Decomposition

The EEMD method utilizes important statistical characteristics
of noise and the scale separation capability of the EMD method.
The effects of the decomposition using the EEMD method are that

the added white noise series cancel each other in the final mean of
the corresponding IMFs; the mean IMFs stay within the natural
dyadic filter windows, and thus it is significant to reduce the
chance of mode mixing and preserve the dyadic property. The
EEMD method can be briefly summarized as follows:

(1) Set the number of ensemble trials N and the amplitude of
the added white noise a.

(2) Add random Gauss white noise with zero-mean to the origi-
nal analyzed signal for N times. The added amplitude
standard deviation is constant

xiðtÞ ¼ xoðtÞ þ niðtÞ (1)

where xoðtÞ is the original signal, xiðtÞ is the signal with the ith
added white noise, and niðtÞ is the ith added white noise
(i ¼ 1; 2; :::N).

(3) Decompose xiðtÞ by EMD to get the respective IMFs
denoted cijðtÞ and a residue of data denoted riðtÞ. cijðtÞ
denotes the jth IMF of decomposition of the ith added white
noise to signal.

(4) If i < N, go to step (2) with i ¼ iþ 1; else go to the next
step.

(5) Utilize the principle of uncorrelated random sequence sta-
tistics zero-mean, and calculate the above corresponding
IMFs by an ensemble average way to get the final IMFs as
the final results of EEMD method

cj tð Þ ¼ 1

N

XN

i¼1

cij tð Þ (2)

where cjðtÞ expresses the jth IMF component derived by EEMD.
According to Wu and Huang [23], the decomposition error e is

the final standard deviation of error, which is defined as the
difference between the input signal and the corresponding IMFs,
calculated by the following equation:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼0

�X � xo tð Þ � xr tð Þð Þ
� �2

vuut (3)

where xrðtÞ is the reconstructed signal via the corresponding IMFs

and the final residue decomposed by EEMD (Eq. (4)), �X is the
mean value of error (Eq. (5)), and T is the total length of the origi-
nal signal

Fig. 1 The decomposition results of EEMD including the intermittent signal
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xrðtÞ ¼
Xn

j¼1

cjðtÞ þ rnðtÞ (4)

�X ¼ 1

T

XT

t¼0

xo tð Þ � xr tð Þð Þ (5)

The relationship of the ensemble number N, the amplitude of
the added white noise a, and the decomposition error e is given in
the following equations:

e ¼ affiffiffiffi
N
p (6a)

or

N ¼ a
e

� �2

(6b)

3 The Proposed Method

The proposed method includes an adaptive algorithm and a
multimode search algorithm. The adaptive algorithm is developed
to automatically obtain the initial values of the added white noise
amplitude and the ensemble number. The multimode search algo-
rithm is explored to optimize the critical two parameters by its
performance in global and local search. Thus, the two crucial
parameters in EEMD are adaptively obtained. The optimal EEMD
method is described in Fig. 2, and the algorithm is introduced in
detail subsequently.

3.1 Adaptive Algorithm. The adaptive algorithm is
described as follows:

Step 1: Input the original signal data.
Step 2: Calculate the amplitude standard deviation of the origi-

nal signal denoted ro.
Step 3: Decompose the original signal by EMD method, obtain

the first IMF regarded as high-frequency component
information, and calculate the amplitude standard devi-
ation of the first IMF denoted rh.

Step 4: Calculate the ratio coefficient e according to e ¼ rh=ro.
Step 5: Calculate the amplitude of the added white noise ao

according to ao ¼ e=4.
Step 6: Regard ao as the initial value of the amplitude of the

added white noise.

3.2 Multimode Search Algorithm. The adaptive algorithm
is used to automatically obtain the initial values of the added
white noise amplitude. In this section, the multimode search

algorithm is developed to optimize the amplitude of the added
white noise and the ensemble number.

In the multimode search algorithm, a varied step-length search
strategy is designed so that the pattern direction is more approxi-
mated to efficient descent direction. The interpolation and nonmo-
notone technique are used in order to improve local search and
global convergence. The multimode search algorithm alternates
implementation of two searches from the initial point: axial search
and pattern search. Axial search is an exploratory move designed
to determine the new base point and the direction conducive to
decrease the values of fitness function, and move in the direction
of m-axis. Pattern search is a pattern move designed to utilize the
information acquired in the exploratory moves, and accomplish
the actual minimization of the function by moving in the conjunc-
tion direction of two adjacent base points.

Let ei ¼ ð0;…; 0; 1;…; 0ÞT; i ¼ 1; 2;…;m and ei denote unit
vector and m denote m direction of axis. xk denotes the kth base
point (k is the search loop step number), and yiði ¼ 1; 2;…;mÞ is
used to indicate a starting point searching in the direction of the
ith axis ei. The multimode search algorithm is described as fol-
lows and its flowchart is shown in Fig. 3.

Step 1: The decomposition error (Eq. (3)) by EEMD method is
set as the objective function f ðxÞ, which is related to a and N.

Step 2: Select initial point x1, initial step length h > 0 (h is a
m-dimensional vector rather than a numerical value), acceleration
factor d � 1, increase rate of step length k > 1, decrease rate of
step length b 2 ð0; 1Þ, and accuracy requirement e 2 ð0:001;
0:01Þ. Let y1 ¼ x1, and k ¼ 1.

Step 3: Start axial search mode. In every axial search, there are
two search directions: one is along the positive direction (þei) of
the axis, and the other is the opposite (�ei), i ¼ 1; 2; :::;m. Com-

pare the values of f ðyi þ hðiÞ � eiÞ ¼ fi1 (positive direction),

f ðyi � hðiÞ � eiÞ ¼ fi2 (negative direction), and f ðyiÞ ¼ fi3.
Step 3.1: Positive direction axial search: If fi1 < fi2 � fi3 or

fi1 < fi3 � fi2, let yiþ1 ¼ yi þ hðiÞ � ei and hðiÞ ¼ hðiÞ � k (the
search along the positive direction of the axis is effective).

Step 3.2: Negative direction axial search: If fi2 < fi1 � fi3 or

fi2 < fi3 � fi1, let yiþ1 ¼ yi � hðiÞ � ei and h ¼ h� k (the search
along the negative direction of the axis is effective); else let

yiþ1 ¼ yi and search along another axis. The search should be

along m-axes, and a value of f ðymþ1Þ is obtained.
Step 4: If f ðymþ1Þ � f ðxkÞ (it means axial search mode fails and

the process should be repeated until it succeeds), go to step 5. If

f ðymþ1Þ < f ðxkÞ, go to step 6.
Step 5: Decrease step size, let h ¼ h� b, go to step 3.
Step 6: Start pattern search mode. Let xkþ1 ¼ ymþ1 and the

direction of ðxkþ1 � xkÞ is probable to decrease the function value.
Therefore, pattern search will be along that direction, which is

y1 ¼ xkþ1 þ d� ðxkþ1 � xkÞ, let k ¼ k þ 1, go to step 3.
Step 7: If f ðymþ1Þ < f ðxkÞ (it means pattern search mode suc-

ceeds), go to step 9. If f ðymþ1Þ � f ðxkÞ (it means pattern search
mode fails), go to step 8.

Step 8: Decrease step size, let h ¼ h� b and d ¼ d� b, and
back to step 3.

Fig. 2 The framework of the optimal EEMD method
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Step 9: Increase step size h ¼ h� k, and go to step 10.
Step 10: If f ðy1Þ < e, i 2 ½1;m�, then stop. If not, back to step 3.
An example of two-dimensional coordinate system is shown in

Fig. 4. e1 and e2 are unit vectors, and o is the origin of the coordinate.
x1 denotes the first base point of the first search loop. A loop process
of axial and pattern search is explained elaborately as follows.

(1) Start axial search mode shown in Fig. 4(a). In the axial
search of the e1 axis, there are two search directions: the
positive direction (þe1) and the negative (�e1). Let

y1 ¼ x1. Compare the values of f ðy1 þ hð1Þ � e1Þ ¼ f11

(positive direction), f ðy1 � hð1Þ � e1Þ ¼ f12 (negative

direction), and f ðy1Þ ¼ f13. If f11 < f12 � f13, search along
the positive direction of the e1 axis and obtain the new

point y2 of axial search. Similarly, if f22 < f21 � f23, search
along the negative direction of the e2 axis and obtain the

new point y3 of pattern search.
(2) Start pattern search mode shown in Fig. 4(b). Let x2 ¼ y3.

Compare the values of f ðx1Þ and f ðy3Þ. If f ðy3Þ < f ðx1Þ,
then start pattern search along the direction of (x2 � x1),

and obtain the new base point y1 ¼ x1 þ d� ðx2 � x1Þ.
(3) Start another axial and pattern search loop (step 6: let

k ¼ k þ 1, go to step 3) shown in Fig. 4(c).

3.3 Evaluation Indices and Competitor Methods. Three
widely used indices, i.e., decomposition error e (Eq. (3)) [36,37],
index of orthogonality (IO) of IMFs [38,39], and correlation coef-
ficient [23,38,39], are applied to evaluate the performances of the
proposed optimal EEMD method. The IO ðj 6¼ k; k ¼ 1; 2; :::; nÞ is
shown in the following equation:

IO ¼
XT

t¼0

Xnþ1

j

Xnþ1

k

cjðtÞckðtÞ=x2ðtÞ

0
@

1
A (7)

For two time series X ¼ fxi; i ¼ 1; 2; :::; ng and Y ¼ fyi;
i ¼ 1; 2; :::; ng, the correlation coefficient qXY of X and Y is calcu-
lated by

qXY ¼

Xn

i¼1

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

xi � �xð Þ2
Xn

i¼1

yi � �yð Þ2
s (8)

where �x ¼
Pn

i¼1 xi=n and �y ¼
Pn

i¼1 yi=n. qXY is utilized to evalu-
ate the correlation coefficient of the decomposed components
with the original components.

A large value of decomposition error and a small correlation
coefficient indicate a significant difference between the decom-
posed and the original components, and hence a poor performance
of decomposition. The setting value of e between 0.001 and
0.01 is usually acceptable. It should be noted that IO is a global
evaluation criterion. The larger the IO value is, the worse the
orthogonality of the IMFs is. The larger the correlation between
the decomposed components with the original components is, the
higher decomposition accuracy is. Ideally, if the IO value is zero,
the IMFs are completely orthonormal.

Two competitor methods are used to compare the performance
with the proposed optimal EEMD: the traditional EEMD [23] and
the latest improved EEMD [34].

Fig. 4 Axial search mode and pattern search mode in two-dimensional coordinate system

Fig. 3 Flowchart of multimode search algorithm
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4 Simulation Experiment

4.1 Simulation Results. The simulated signal x (Eq. (9))
shown in Fig. 5 contains a modulation Gaussian pulse wave and
two sinusoid waves with same amplitudes, different initial phases,

and frequencies. The main components of the simulated signal are
given as follows:

xðtÞ ¼ x1ðtÞ þ x2ðtÞ þ x3ðtÞ (9)

Fig. 5 The simulated signal and its components

Fig. 6 The decomposition results of the traditional EEMD

Fig. 7 The decomposition results of the improved EEMD
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x2ðtÞ ¼ sinð2p� 1000tÞ (10)

x3ðtÞ ¼ sinð2p� 250tþ 0:32pÞ (11)

The modulation Gaussian pulse wave x1 has the repetition rate
of 1000 Hz, the pass band sawtooth width of 0.01 s, and the
attenuation rate of 0.8. The two sinusoidal waves are x2 (Eq. (10))
and x3 (Eq. (11)). The sampling frequency is set as 50 kHz, and
the sampling time is 0.01 s.

There are totally seven parameters: the ensemble number N,
the amplitude of the added white noise a, initial step length h,

acceleration factor d, increase rate of step length k, decrease rate
of step length b, and accuracy requirement e. These parameters
are set as follows: (1) According to Ref. [23], in general, an
ensemble number of a few hundred will lead to a very good result.
In case study of Ref. [23], the ensemble number N was set as 100,
and the good result has been obtained. Therefore, the ensemble
number N for each case is set as 100. (2) In Ref. [23], the ampli-
tude of the added white noise was suggested to be set as 0.2.
According to the criterion of adding white noise in Ref. [34], the
amplitude of the added white noise a was 0.0335. In this study,
through the proposed adaptive algorithm and the multimode

Fig. 8 The decomposition results of the optimal EEMD

Fig. 9 Comparison between reconstructed signal using three methods with the original
signal
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search algorithm, the amplitude of the added white noise a was
calculated and searched as 0.0035. (3) Initial step length h > 0,
the value of initial step length was set as [0.01, 2]. The value of
0.01 is the variable quantity of the amplitude of the added white
noise a in each step. The value of two is the variable quantity of
the ensemble number of N in each step. (4) According to Ref.
[40], acceleration factor d � 1, in this study the value of accelera-
tion factor d was set as 1. (5) Increase rate of step length k � 2.
Because increase step size, h ¼ h� k. To ensure the ensemble
number N in the initial step length h is integer, the value of
increase rate of step length was chosen as the least integer 2. (6)
Decrease rate of step length b < 1. Because decrease step size,
h ¼ h� b. To ensure the ensemble number N in the initial step
length h is integer, the value of decrease rate of step length was
chosen as the decimal 0.5. (7) Accuracy requirement e is the mini-
mum allowable decomposition error. The value of e was set as
0.001, this value is far lower than 0.1 which is acceptable in Ref.
[23]. In summary, the parameters are in the maximum range, and
the optimal results through them can be obtained. The setting of
the initial parameters is the same as in the following examples.

The decomposition results of the traditional EEMD [23], the
improved EEMD [34], and the optimal EEMD are shown in
Figs. 6–8, respectively. Figure 9(a) shows the reconstructed sig-
nals using three methods and the original signals, and Fig. 9(b)
shows a part of the result of Fig. 9(a) in range of 3.20 ms to
3.38 ms of time, which is chosen arbitrarily.

From these figures, some findings can be obtained.

(1) From Fig. 6, two sets of IMF components (IMF1 and
IMF2, IMF3 and IMF4) have a similar scale and mutual
influence. The correlation coefficients of IMF1 and IMF2,
IMF3 and IMF4 are 0.5267 and 0.87. The three components
cannot be separated into different IMFs, and mode mixing
problem occurs.

(2) From Fig. 7, the correlation coefficients of IMF2 and
IMF3, IMF4 and IMF5 are 0.8473 and 0.5152, respectively,
which implies that the amplitude ratio of added white noise
is relatively large and the redundant components IMF2 and
IMF5 are generated.

(3) From Fig. 8, IMF1, IMF2, and IMF3 represent x1, x2, and
x3, respectively. There is no redundant component com-
pared with Fig. 7.

(4) From Fig. 9(a), it can be seen that the curves are very diffi-
cult to distinguish the differences between the recon-
structed signals using three methods and the original
signals. Figure 9(b) illustrates the difference between
the reconstructed signal using the traditional EEMD and
the original signal is largest, the difference between the

reconstructed signal using the improved EEMD and the
original signal is in the middle, and the difference between
the reconstructed signal using the optimal EEMD and the
original signal is smallest. Therefore, the optimal EEMD
method can effectively eliminate mode mixing and separate
signals of different scales compared with the traditional
EEMD [23] and the improved EEMD [34].

4.2 Evaluation and Discussion. In order to further validate
the effectiveness of the proposed method, four aspects are dis-
cussed. In order to ensure the accuracy of the experiment data, the
experiment was conducted for each group of the same a and N
with 100 times, and the mean is regarded as the final result.

(1) N ¼ 100, a¼ 0.001, 0.0015,…, 0.5 are chosen to obtain the
relationship between the IO value and the amplitude ratio
of white noise a, as shown in Fig. 10.

(2) The decomposition error and index of orthogonality are
compared with the same N (N¼ 10, 15,…, 95, 100) value,
as shown in Tables 1 and 2.

(3) The correlation coefficients between the decomposed com-
ponents and the real components are compared with the
same N (N¼ 100) value, as shown in Table 3.

(4) The computational efficiency and decomposition accuracy
are calculated and compared with the same decomposition
error (e ¼ 0:01) for different a, as shown in Table 4.

The main conclusions are included as follows:

(1) It can be seen from Fig. 10 that the IO value is minimum
when a ¼ 0:0035 in the range of [0.001, 0.5], i.e., at this
point the decomposition accuracy is the highest.

(2) Table 1 shows that the decomposition error of the improved
EEMD is approximately equal to one-sixth of the one of
the traditional EEMD, and the decomposition error of the
optimal EEMD is approximately equal to one-tenth of the
one of the improved EEMD. The results shown in Table 1
also suggest that for the fixed a value, accordingly, the e
value decreases when the N value increases.

(3) In Table 2, for the same N value, the mean IO values of the
traditional EEMD, the improved EEMD, and the optimal
EEMD are 0.1698, 0.1471, and 0.0473, respectively. That
is to say, the IO values of IMFs obtained by the traditional
EEMD and the improved EEMD are larger, and the decom-
position accuracies are lower. The IO of IMFs derived by
the optimal EEMD is better, and the decomposition accu-
racy is higher. According to the above results, the influence

Fig. 10 Relationship between the value of index of orthogonality IO and the amplitude ratio
of white noise a
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of the change of the N value on IO can be neglected when
a value is selected.

(4) The correlation coefficients between the decomposed com-
ponents and the real components are given in Table 3.
Compared to the traditional EEMD and the improved
EEMD, the optimal EEMD has relatively larger correlation
coefficients, i.e., it has less reconstruction error.

(5) Table 4 shows the IO values of the decomposed results and
the computational time of these three methods. It is distinct
that the decomposed results derived by the optimal EEMD
have the smallest orthogonal coefficient. Moreover, the
computational time of the optimal EEMD is much less than
other two methods.

In summary, the results indicate that compared with the tradi-
tional EEMD and the improved EEMD, the optimal EEMD
method has advantages in aspects of eliminating mode mixing,

Table 2 Comparison of index of orthogonality with the same N
value

Ensemble
number

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

10 0.1388 0.1334 0.0385
15 0.1656 0.1245 0.0453
20 0.1561 0.1326 0.0468
25 0.1719 0.1476 0.0464
30 0.1746 0.1421 0.0509
35 0.1766 0.1518 0.0499
40 0.1696 0.1535 0.0463
45 0.1685 0.1541 0.0465
50 0.1721 0.1454 0.0490
55 0.1732 0.1497 0.0466
60 0.1742 0.1542 0.0475
65 0.1740 0.1508 0.0483
70 0.1759 0.1484 0.0485
75 0.1749 0.1478 0.0483
80 0.1697 0.1527 0.0464
85 0.1684 0.1502 0.0467
90 0.1729 0.1506 0.0479
95 0.1744 0.1523 0.0496
100 0.1743 0.1525 0.0486
Mean 0.1698 0.1471 0.0473

Table 3 Comparison of correlation coefficient with the same N
value

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

x1 0.9733 0.9907 0.9915
x2 0.9680 0.9820 0.9948
x3 0.9894 0.9906 0.9920

Table 4 Comparison of computational efficiency and decom-
position accuracy with the same decomposition error

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.0335 0.0035
N 400 11 1
Computational time (s) 53.44 1.41 0.10
IO 0.1746 0.1334 0.0485

Table 1 Comparison of decomposition error with the same N value

Ensemble
number

Traditional EEMD [23]
decomposition error (e1)

Improved EEMD [34]
decomposition error (e2)

Optimal EEMD
decomposition error (e3) e2/e1 e3/e2

10 0.0639 0.0111 0.00113 0.1733 0.1021
15 0.0534 0.0089 0.00095 0.1661 0.1069
20 0.0476 0.0077 0.00081 0.1620 0.1051
25 0.0417 0.0070 0.00072 0.1685 0.1026
30 0.0378 0.0063 0.00066 0.1661 0.1051
35 0.0349 0.0058 0.00062 0.1673 0.1065
40 0.0325 0.0055 0.00057 0.1704 0.1025
45 0.0306 0.0052 0.00054 0.1697 0.1034
50 0.0293 0.0049 0.00050 0.1665 0.1034
55 0.0280 0.0047 0.00049 0.1663 0.1045
60 0.0269 0.0044 0.00047 0.1635 0.1059
65 0.0260 0.0043 0.00044 0.1640 0.1038
70 0.0249 0.0041 0.00044 0.1655 0.1056
75 0.0239 0.0039 0.00043 0.1647 0.1083
80 0.0230 0.0039 0.00041 0.1675 0.1058
85 0.0224 0.0038 0.00039 0.1690 0.1041
90 0.0216 0.0036 0.00038 0.1665 0.1067
95 0.0211 0.0036 0.00036 0.1702 0.1016
100 0.0209 0.0035 0.00035 0.1658 0.1023

Mean 0.1670 0.1045
1/mean 5.9882 9.5662

Table 5 Specification and characteristic frequency of the bear-
ing (JEM SKF 6205-2RS)

Parameter Value

Inside diameter 25 mm
Outside diameter 52 mm
Thickness 15 mm
No. of balls, Nb 9
Inner ring fault diameter 0.1778 mm
Inner ring fault depth 0.2794 mm
Shaft rotation speed, fz 1796 rpm (29.93 Hz)
Sampling frequency 12 kHz
Sample size 10,000
Inner ring defect frequency, fi 162.1 Hz
Outer ring defect frequency, fo 107.3 Hz
Cage train defect frequency, fc 11.92 Hz
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achieving higher decomposition accuracy, and saving computa-
tional time.

5 Examples With Bearing Vibration Signals

5.1 Example 1: Bearing Inner Ring. In this example, the
bearing data set is obtained from Case Western Reserve Univer-
sity Bearing Data Center [41], which is the standard data set for
analysis of vibration signals. The vibration signals are collected
from normal and defective bearing inner ring. The tested bearings
are JEM SKF 6205-2RS, and Table 5 shows the specification and
characteristic frequency of the bearings.

5.1.1 Vibration Signal Analysis of Normal Bearing. For the
vibration signals from normal bearing inner race, the amplitude of
added white noise a of the traditional EEMD, the improved
EEMD, and the optimal EEMD is 0.2, 0.1973, and 0.0082, respec-
tively. The decomposition error is fixed as 0.01, and the N values
are 400, 389, and 76 accordingly. The computational time and the
orthogonality values are shown in Table 6. The IO values obtained
by the traditional EEMD and the improved EEMD are larger, the
decomposition accuracies are lower, and mode mixing cannot be
eliminated. However, the IO values obtained by applying the
optimal EEMD are approximately equal to 1/14 of the two former
values, which means that the decomposition accuracy is improved
and mode mixing is reduced. It is clear that the computational
time of the optimal EEMD is less than other two methods, and the
calculation efficiency is improved.

Figure 11 is the decomposition result of vibration signals from
normal bearing inner ring decomposed by the optimal EEMD,
where N for each case is set as 100. To extract the information
more accurately, Hilbert–Huang transform (HHT) spectrum and
FFT spectrum of IMFs obtained by the optimal EEMD are calcu-
lated. Figures 12 and 13 are the HHT spectrum and the FFT spec-
trum accordingly. From Fig. 11, it can be seen that IMF1 has a
high-frequency periodic component. In Fig. 12, there is an inter-
esting phenomenon that at the frequency of 1000 Hz, the energy

Table 6 Comparison of vibration signals’ analysis from normal
bearings’ inner race

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.1973 0.0082
N 400 389 1
Computational time (s) 390.4 355.3 1
IO 0.1891 0.1889 0.0128

Fig. 11 Result of vibration signals from normal bearings decomposed by the optimal EEMD

Fig. 12 The HHT spectrum of normal bearing signals decomposed by the optimal EEMD
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density distribution is most concentrated. It can be seen from
Fig. 13 that frequencies such as 358.8 Hz, 164.4 Hz, and 104.4 Hz
in the FFT spectrum are clear.

5.1.2 Vibration Signal Analysis of Defective Bearing. For the
vibration signal from detective bearing inner race, the amplitude
of the added white noise a of the traditional EEMD, the improved
EEMD, and the optimal EEMD is 0.2, 0.2375, and 0.0325, respec-
tively. When the decomposition error is fixed as 0.01, the N values
are 400, 564, and 163 accordingly. Table 7 illustrates the compu-
tational time and the orthogonality values. The IO values obtained

by the traditional EEMD and the improved EEMD are approxi-
mately equal to 1%, the decomposition accuracy is similar. In
comparison, the IO value of the optimal EEMD is only 1/17 of the
traditional EEMD’s and 1/19 of the improved EEMD’s. The
results show that the decomposition accuracy is increased. It is
clear that the computational time of the optimal EEMD is approxi-
mately equal to 1/35 of the traditional EEMD’s and 1/50 of the
improved EEMD’s, and the computational efficiency is improved.

Figure 14 illustrates the decomposition results of bearing inner
ring defect vibration signals decomposed by the optimal EEMD.
Figures 15–17 are the HHT spectrum, the FFT spectrum, and the
envelope spectrum, respectively. From the HHT spectrum and the
FFT spectrum, it can be observed that every IMF component is
decomposed nearly perfect by the optimal EEMD, and mode mix-
ing is effectively reduced. It is known that 162.1 Hz is the
theoretical fault frequency of bearing inner race, and 162 Hz is
almost equal to the theoretical fault frequency. Meanwhile, 30 Hz
is almost equal to the shaft rotation speed (fz ¼ 29:93 Hz) as
shown in Table 5. In the envelope spectrum, the spectrum lines of
the inner ring fault frequency (fi ¼ 162 Hz), twice inner ring fault
frequency (2fi ¼ 324 Hz), four times of inner ring fault frequency
(4fi ¼ 648 Hz), rotation frequency (30 Hz), and double frequency

Fig. 13 The frequency spectrum of normal bearing signals decomposed by the optimal
EEMD

Table 7 Comparison of vibration signals’ analysis from bear-
ing inner race defect

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.2375 0.0325
N 400 564 11
Computational time (s) 431.7 610.2 12.2
IO 0.0102 0.0118 0.0006

Fig. 14 Results of vibration signals from defective bearing decomposed by the optimal
EEMD
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Fig. 15 The HHT spectrum of defective bearing signals decomposed by the optimal EEMD

Fig. 16 The frequency spectrum of defective bearing signals decomposed by the optimal
EEMD

Fig. 17 The envelope spectrum of defective bearing signals decomposed by the optimal
EEMD
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are very distinct. In the FFT spectrum, the high-frequency region
with the center frequency of 3365 Hz has the sideband of the theo-
retical fault frequency of bearing inner race. In middle-frequency
region and low-frequency region, the specific frequency compo-
nents of 2692 Hz (10� 9fz), 1436 Hz (9fi � fz), 628.8 Hz
(4fi � fz), and 360 Hz (2fi þ fz) are obviously double-frequency
components of the shaft rotation speed, double-frequency compo-
nents of inner ring defect frequency, and their sideband compo-
nents. These results are consistent with the failure law of bearing
inner race. Hence, the optimal EEMD can effectively decompose
the vibration signals from the detective bearing inner ring.

5.2 Example 2: Bearing Outer Ring. In order to further vali-
date the performance of the proposed method, another case is con-
ducted. The data in this case are generated by the NSF I/UCR
Center for Intelligent Maintenance Systems (IMS) with support
from Rexnord Corp. [42]. The vibration signals are collected from
normal and defective bearing outer ring. The model of the tested
bearing is Rexnord ZA-2115 double row bearings, and the specifi-
cation and characteristic frequency of the bearing are shown in
Table 8.

5.2.1 Vibration Signal Analysis of Normal Bearing. For the
vibration signals from normal bearing outer race, the amplitude of
added white noise a of the traditional EEMD, the improved
EEMD, and the optimal EEMD is 0.2, 0.1796, and 0.0196,

Table 8 Specification and characteristic frequency of the
bearing

Parameter Value

Pitch diameter 71.5 mm
Roller diameter 8.4 mm
No. of rollers, Nb 16
Shaft rotation speed, fz 2000 rpm (33.33 Hz)
Sampling frequency 20 kHz
Sample size 10,000
Outer ring defect frequency 236.40 Hz
Tapering contact angle 15.17 deg

Table 9 Comparison of vibration signals’ analysis from normal
bearings’ outer race

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.1796 0.0196
N 400 322 4
Computational time (s) 376.8 278.8 3.5
IO 0.0721 0.0673 0.0038

Fig. 18 Result of vibration signal from normal bearings decomposed by the optimal EEMD

Fig. 19 The HHT spectrum of normal bearing signals decomposed by the optimal EEMD

031003-12 / Vol. 139, JUNE 2017 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jvacek/936126/ on 04/18/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



respectively. When the decomposition error is set as 0.01, the N
values are 400, 322, and 4 accordingly. The computational time
and the orthogonality value are shown in Table 9. The IO value of
the traditional EEMD is quite close to the improved EEMD’s.
However, the IO value of the optimal EEMD is approximately
equal to 1/18 of the two former’s, which means that the decompo-
sition accuracy is improved and the mode mixing is reduced.
Obviously, the computational time of the optimal EEMD is less
compared to the two former’s, and the calculation efficiency also
has certain improvement.

Figure 18 is the decomposition result of vibration signals from
normal bearing outer ring decomposed by the optimal EEMD,
where N for each case is set as 100. Figures 19 and 20 are the
HHT spectrum and the FFT spectrum, respectively. In Fig. 19, the
energy density distribution is most concentrated near by the
frequency of 1000 Hz. From Fig. 20, it can be seen that the fre-
quency of 986 Hz is the dominant frequency. The result of Fig. 20
is consistent with the result of Fig. 19.

5.2.2 Vibration Signal Analysis of Defective Bearing. For the
vibration signal from detective bearing outer race, the amplitude
of added white noise a of the traditional EEMD, the improved
EEMD, and the optimal EEMD is 0.2, 0.2062, and 0.0187, respec-
tively. When the decomposition error is also fixed as 0.01, the N
values are 400, 425, and 4 accordingly. Table 10 illustrates the
computational time and the orthogonality value. The IO values of
the traditional EEMD and the improved EEMD are approximately
equal to 4.5%, the decomposition accuracy is similar. In compari-
son, the IO value obtained by the optimal EEMD is one-fourth of
the two former’s. The result shows that the decomposition accu-
racy is improved. It is clear that the computational time of the
optimal EEMD is approximately equal to 1/70 of the traditional

Fig. 20 The frequency spectrum of normal bearing signals decomposed by the optimal
EEMD

Table 10 Comparison of vibration signals’ analysis from bear-
ing outer race defect

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.2062 0.0187
N 400 425 4
Computational time (s) 425.9 523.5 6.0
IO 0.0445 0.0458 0.0162

Fig. 21 Result of vibration signals from defective bearing decomposed by the optimal EEMD
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Fig. 22 The HHT spectrum of defective bearing signals decomposed by the optimal EEMD

Fig. 23 The frequency spectrum of defective bearing signals decomposed by the optimal
EEMD

Fig. 24 The envelope spectrum of defective bearing signals decomposed by the optimal
EEMD

031003-14 / Vol. 139, JUNE 2017 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jvacek/936126/ on 04/18/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



EEMD’s and 1/87 of the improved EEMD’s, so the computational
efficiency is greatly improved.

Figure 21 illustrates the first five IMFs of the decomposition
result derived by the optimal EEMD for the vibration signal with
bearing outer ring fault. Figures 22–24 are the HHT spectrum, the
FFT spectrum, and the envelope spectrum, respectively. It can be
seen that there are obviously periodic components. Compared to
the inner ring defects, the impacts caused by the outer ring defects
are stronger in the vibration signals. Therefore, detecting the outer
race detect is relatively easy. According to the empirical formula,
the characteristic frequency of the outer ring defect is 236.4 Hz as
shown in Table 8. On the one hand, some special features are found
in the FFT spectrum shown in Fig. 23, and these frequencies such
as 462 Hz, 694 Hz, 1156 Hz, and 1618 Hz are clear. It also can be
seen that these frequencies are twice, 3 times, 5 times, and 7 times
of 231 Hz. On the other hand, the distinct regularity can be obtained
from Fig. 23. Consequently, it can be concluded that the estimated
characteristic frequency is 231 Hz. This frequency is close to the
characteristic frequency. Hence, the optimal EEMD can effectively
decompose the vibration signals from the bearing outer ring defect.

6 A Case Study

6.1 Experiment Setup. In order to investigate the effective-
ness of the proposed method for vibration signal decomposition, a
data set from a milling process is used. The machine is a three-
axis vertical milling center VMC850E. The test workpieces are
with thin-walled structure. The type of material is 2024T3 duralu-
min alloy. The sizes of the workpiece are 68 mm� 68 mm� 4 mm.
LABVIEW is used for data acquisition. The data acquisition system

Fig. 25 The experimental setup

Fig. 26 The original acceleration signal of one running sample

Table 11 Comparison of acceleration signals’ analysis

Comparative
item

Traditional
EEMD [23]

Improved
EEMD [34]

Optimal
EEMD

a 0.2 0.1901 0.0297
N 400 361 9
Computational time (s) 466.67 387.64 7.37
IO 0.1127 0.1090 0.0066

Fig. 27 Results of acceleration signals decomposed by the optimal EEMD
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is composed of NI CompactRIO 9030, NI 9233, and a vibration
sensor. The vibration sensor is a tri-axial acceleration sensor
(Model 356A16). The data sampling rate is 25,000 Hz. Figure 25
is the experimental setup.

6.2 Results and Analysis. Figure 26 is one of the original
signals from the acceleration sensor installed on a spindle bearing
near the cutting tool. Approximately130,000 data points were

collected for each milling run with the entry-milling-exit cutting
procedure. About 10,000 samples were chosen to implement the
decomposition experiment.

For the acceleration signals, the amplitude of added white noise
a of the traditional EEMD, the improved EEMD, and the optimal
EEMD is 0.2, 0.1901, and 0.0297, respectively. The decomposi-
tion error is set as 0.01, and the N values are 400, 361, and 9
accordingly. The computational time and the orthogonality values

Fig. 28 The HHT spectrum of acceleration signals decomposed by the optimal EEMD

Fig. 29 The frequency spectrum of acceleration signals decomposed by the optimal EEMD

Fig. 30 The envelope spectrum of acceleration signals decomposed by the optimal EEMD
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are shown in Table 11. The IO value of the traditional EEMD is
close to the improved EEMD’s. However, the IO value of the
optimal EEMD is approximately equal to 1/17 of the two for-
mer’s, which means that the decomposition accuracy is improved
and the mode mixing is reduced. Obviously, the optimal EEMD is
more effective compared to the two former methods.

Figure 27 is the first five IMFs of the decomposition result of
acceleration signals derived by the optimal EEMD, where N for
each case is set as 100. Figures 28 and 29 are the HHT spectrum
and the FFT spectrum, respectively. In Fig. 28, the energy density
distribution is most concentrated near by the frequency of 3000
Hz. From Fig. 29, it can be seen that the frequency of 2800 Hz is
the dominant frequency. The result of Fig. 29 is consistent with
the result of Fig. 28. The distinct dominant frequency is 233.5 Hz
from Fig. 30. At the same time, some special features are found in
the FFT spectrum shown in Fig. 29, and these frequencies such as
466.9 Hz, 700.4 Hz, 1167 Hz, and 2800 Hz are clear. It also can be
seen that these frequencies are appropriate 2 times, 3 times, 5
times, and 12 times of 233.5 Hz. In this experiment, the frequency
233.5 Hz is the motor rotation excitation frequency.

7 Conclusion

This paper presents an optimal EEMD method based on an
adaptive algorithm and a multimode search algorithm, aiming at
the optimization of the two critical parameters including the ampli-
tude of added white noise and the number of ensemble trials to
solve mode mixing problem. The simulation results demonstrate:
(1) Given fixed a value, the decomposition error will decrease with
the increase of the ensemble number accordingly. The influence of
the change of the N value on IO can be neglected. (2) Compared
with the traditional EEMD and the improved EEMD, the proposed
method achieves higher decomposition accuracy and faster compu-
tational efficiency. The two examples with bearing vibration signals
and a case study also demonstrate that the optimal EEMD method
can automatically obtain the appropriate EEMD parameters for the
different scale signals. It can effectively implement the vibration
signal decomposition without mode mixing.

This paper focuses on the use of the optimal EEMD method for
signal decomposition, and some issues might be investigated in the
future based on the proposed method. (1) Multiscale monitoring of
mechanical systems. Many signals exhibit multiscale nature, and
the characterization of multiscale patterns might improve the moni-
toring performances. Since the proposed optimal EEMD method
for multiscale vibration signal decomposition have good perform-
ances, it can be further investigated and applied in monitoring of
mechanical systems. (2) Fault diagnosis of mechanical systems.
Different faults could have different effects on distinct scales of a
signal. Through the proposed optimal EEMD method, a complex
signal can be decomposed into a minimal number of physically rel-
evant and interpretable patterns, and then the potential root causes
might be identified. (3) Other mode search algorithms need to be
investigated and used to enhance the proposed method.
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